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Solutions of renormalization-group flow equations with full momentum dependence
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We demonstrate the power of a recently proposed approximation scheme for the nonperturbative renormal-
ization group that gives access to correlation functions over their full momentum range. We solve numerically
the leading-order flow equations obtained within this scheme and compute the two-point functions of the O(N)
theories at criticality, in two and three dimensions. Excellent results are obtained for both universal and

nonuniversal quantities at modest numerical cost.
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The renormalization group, in its nonperturbative version
[1,2] (also referred to as the exact renormalization group),
provides a general formalism giving access, for arbitrary
coupling strength, to a whole set of physically important
quantities, universal as well as nonuniversal [3,4], thermody-
namic functions, and momentum-dependent correlation func-
tions, etc. However, most studies within this framework in-
volve approximations that restrict their scope to the
calculation of thermodynamical quantities or correlation
functions with vanishing external momenta. In order to ac-
cess the full momentum dependence, Blaizot, Méndez-
Galain, and Wschebor (BMW) [5] introduced an approxima-
tion scheme which overcomes this limitation. In principle,
this scheme allows us to compute in all dimensions, at and
away from criticality, both universal and nonuniversal quan-
tities, as well as momentum-dependent properties from p
=0 up to the ultraviolet cutoff A (inverse lattice spacing).

In this Rapid Communication, we present the first com-
plete implementation of the leading-order approximation of
the BMW scheme and demonstrate its power by using O(N)
models as a test bed. We compute the entire momentum de-
pendence of the two-point functions in two and three dimen-
sions and obtain excellent results for both universal and non-
universal quantities.

We start by a brief outline of the formalism. In order to
simplify the presentation, we shall write only the equations
corresponding to the case of a scalar field theory with quartic
coupling, i.e., restrict the presentation to the case N=1 (cor-
responding to the Ising model). The strategy of the renormal-
ization group is to build a family of theories indexed by a
momentum scale parameter k, such that fluctuations are
smoothly taken into account as k is lowered from the micro-
scopic scale A down to 0. In practice, this is achieved by
adding to the original Euclidean action S a masslike term of
the form ASk[qo]=%quk(q2)qo(q)qo(—q). The cutoff function
R, is chosen so that Ri(¢*) ~ k> for g =<k, which effectively
suppresses the modes ¢(¢=<k), and so that it vanishes for
q=k, leaving the modes ¢(¢q=k) unaffected. One then de-
fines a scale-dependent partition function
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Z[J]= f Do e—s[<P]—ASk[€D]+.”<P’ (1)

and a scale-dependent effective action I';[¢] through a
(slightly modified) Legendre transform [2],

1
[l @] +1og Z[J]= j Jp- Ef R(P) by (2)
q

with ¢=01n Z,/6J. The variation in the effective action
I'.[ @] as k varies is governed by Wetterich’s equation [1]:

AVE %f AR (qHGilq. 4], (3)
q

where Gilq, p1=[T’g, #l+Ri(gH]™" and T{7[g, 4] is the
second functional derivative of I';[ ¢] with respect to ¢. The
initial conditions of the flow Eq. (3) correspond to the mi-
croscopic scale k=A where all fluctuations are frozen by the
AS; term so that I'y_z[ #]=S[ &]. The effective action of the
original theory is obtained as the solution of Eq. (3) for
k—0 where R,(g?) vanishes. Differentiating Eq. (3) m times
with respect to ¢ yields the flow equation for the vertex
function F,((”I)[ql, eeesqm> @), Thus for instance, the flow
equation for I'® reads as

oI P (p) = J IR(PGHP[TP (P~ p - q.9)
q

XGip+ )T (=p.p+q.,—q)
-r'®0p,-p.a.-9)]. (4)

(Here we assumed the field ¢ to be uniform and omitted the
¢ dependence to alleviate the notation.) Note that the flow
equation for I'"[gq,,...,q,; ] involves '™V and I'{"*?,
leading to an infinite hierarchy.

The flow [Eq. (3)] and the equivalent flow equations for
the vertex functions are exact, but their solution requires, in
general, approximations. It is precisely one of the virtues of
this formulation of field theory to suggest approximation
schemes that are not easily derived in other more conven-
tional approaches. In particular, one can develop approxima-
tion schemes for the effective action itself, that is, which
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apply to the entire set of correlation functions. The BMW
approximation [5] is such a scheme. It relies on two
observations. First, the presence of the cut-off function
R.(¢%) insures the smoothness of the I‘,(C'”)s and limits the
internal momentum ¢ in equations such as Eq. (4) to g=<k. In
line with this observation, one neglects the g dependence of
the vertex functions in the right-hand side of the flow
equations [e.g., in I'® and I'® in Eq. (4)], while keeping
the full dependence on the external momenta p; The

second observation is that, for wuniform fields,
F,((m“)(pl,...,pm,0,¢>)=(9¢l“,((m>(p1,...,pm,d)), which en-

ables one to close the hierarchy of equations.

At the leading order of the BMW scheme one keeps the
nontrivial momentum dependence of the two-point function
and implements the approximations above on Eq. (4), which
becomes

1
KD (. ) = 15(p, ) (3500 = S 10, 9T, (5)

with

Jn(p’ ¢) = j kakRk(qz)Gl]:_l(q’ d))Gk(p +q, d)) . (6)

q

The approximation can be systematically improved: the or-
der m consists in keeping the full momentum dependence of
', ..., and truncating that of I'"*" and I'"*? along
the same lines as those leading to Eq. (5) corresponding to
m=2.

The zeroth-order approximation is the so-called local
potential approximation (LPA) where vertex functions
are obtained as derivatives of the effective potential V,
(equal, to within a volume factor, to I'; evaluated for a

LPA
uniform  ¢), F,Em)(pl,"vpm,ﬁﬁ) = Vi’")(qﬁ), except for

LPA
I'P(p,¢) = p>+V{?($). The LPA has been widely used with
reasonable success [2,4,6,7]. It can be improved through a
systematic expansion in gradients of the fields, usually re-
ferred to as the derivative expansion (DE) [2,8]. However, in
contrast to the BMW scheme, the DE, at any finite order,
does not give access to correlation functions with nonvanish-
ing external momenta (or with external momenta larger than
the smallest mass).

We now turn to the main purpose of the present Rapid
Communication, which is to show that the nonlinear integro-
partial-differential Eq. (5) can be studied as is, without fur-
ther approximation [9]. Note that the earlier studies of Eq.
(5) presented in [10] involve additional approximations
which are linked to a specific cut-off function, and which
become too crude below three dimensions.

In order to treat efficiently the low- and zero-momentum
sector, we work with dimensionless and renormalized
quantities. Thus, we measure all momenta in units of
k: p=plk, rescale p=1¢® according to p=k>Z,K;'p
[K,=(2m)74S,/d, with S, being the volume of the unit
sphere] and set T\P(5,p)=k2Z,'T®(p,p). The running
anomalous dimension 7, is defined by kd,Z,=—m,Z; so that
at a fixed point Z, ~ k™7, with 7 being the anomalous dimen-
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sion of the field at the fixed point. The absolute normaliza-
tion of Z; is fixed by choosing a point (py,p,) where

1752[1: 12>(ﬁo,m—f9(o,m]=1. Then, the flow equation of

f,(cz)(ﬁ, p) follows trivially from Eq. (5). For numerical
reasons, we actually solve two equations: one for

Y,(5.p) Eﬁ‘z[ﬂz)(ﬁ, p)— f}?(o ,p)]-1 and one for the de-
rivative of the dimensionless effective potential Wk(ﬁ)
=7:'k723,V,(p). Note that ['2(0,p)=W(p)+2pW;(p). (Here
and below, primes denote derivative with respect to p.) These

two equations read (dropping the k index to simplify the
notation) as

0¥ =1 +Y)+pasY - (2 —d- n)pY’
+2pp 2 L(P*Y + N T5(P.p) — NiJ5(0.p)]

~15(0,p)(Y'72 + pY"), )

~ _ S T
f?;W=(m—2)W+(d—2+m)ﬁW’+511(0,p)- (8)

Here d,=kdj, 7, is obtained by setting Y[By,p0]=0
in Eq. (7). J,(5.0)=K;'Z k"2, (p.p). and M)
=3W,(3)+25W,(p).

In practice, we use a fixed, regular, (p,p) grid and restrict
the range of the cut-off function by setting R, (g=4)=0.

When computing the double integrals J5(7,5), we need to
evaluate Y for momenta p+q beyond p,.., the maximal

value on the grid. In such cases, we set Y(5)=Y (P, an
approximation checked to be excellent for p,,=5. To ac-
cess the full momentum dependence, we also calculate
F,ﬁz)(p,ﬁ) at a set of fixed freely chosen external p values.
For a given such p, p/k is within the grid at the beginning of
the flow. This is no longer so when k<<p/p,.. then, we
switch to the dimensionful version of Eq. (7) and also set
J3(p,p)=G(p,p)J,(0,p), an excellent approximation when
P> kPax.

We found that the simplest time stepping (explicit Euler),
a finite-difference evaluation of derivatives on a regular
(P,p) grid, and the use of Simpson’s rule to calculate inte-
grals are sufficient to produce stable and fast-converging re-
sults. For all the quantities calculated, the convergence to
three significant digits is reached with a (p,p) grid of
50 X 60 points; with such a grid, a typical run takes a few
minutes on a current personal computer.

Physical quantities exhibit a small dependence on the
shape of R,(4%) and on the point (5,,p,) where 7, is com-
puted. Since in the absence of any approximation, they
would be strictly independent of the cut-off function and of
the choice of the renormalization point, a study of this spu-
rious dependence provides an indication of the quality of the
present approximation. To this end, we use the family of
cut-off functions Ry (q*)=aZq*/[exp(¢*/k*)—1] and vary
systematically the parameters «, py, and py. In all cases stud-
ied, we find the dependence on p,, and p, to be much smaller
than that on « so that only the latter needs to be considered.
As a function of «, physical quantities typically exhibit a
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(a)
10°:Y(p,0)+1

FIG. 1. (Color online) Typical results at criticality and k=0 for
N=2 in d=3 (p and u are measured in units of A, u=3m%107,
r.=6.802 854 731 032 857, and @=2.25). (a) Dimensionful func-
tion Y(p,0)+1=T®(p,0)/p? (b) same data as (a). Top panel:
I'@(p,0)/p*~p~", with =0.041 for p— 0 (red dashed line). Bot-
tom panel: expected UV scaling for the self-energy; the dashed line
shows the exact two-loop result for the slope.

single extremum o, located near a=2, which moreover, al-
ways points toward the best numerical estimates. Following
the principle of minimal sensitivity (PMS) [11], we regard
these extremum values, being locally independent of «, as
our best values.

We now turn to the discussion of results obtained, at
criticality, first in dimension d=3 and for various values of
N. The initial condition of the flow is taken to be
T'?(p.p)=p*+r+up, where the bare coupling u sets
a scale, [u]=[p], independent of the cutoff A. Keeping u
fixed, the critical value r=r, is found by dichotomy. All ex-
pected features of F,Ez)(p) at criticality are observed, as illus-
trated in Fig. 1. Figure 1(a) shows the typical shape of
Y(p,0). In the infrared (IR) regime k<p<u, T'”(p,0)
=p[Y(p,0)+ 1]~ p* 7 [Fig. 1(b), upper panel]. This IR be-
havior of chz)(p) can be used to extract the value of #; the
value thus obtained is in excellent agreement with that de-
duced directly from the renormalization condition. The ultra-
violet (UV) regime k,u<p<<A exists if u is sufficiently
small; this regime can be studied perturbatively and one finds
that, in leading order, p?Y(p,0) ~u?log(p/u). The present
approximation reproduces this logarithmic behavior with,
however, a prefactor that is 8% larger than the two-loop re-
sult [Fig. 1(b), lower panel].
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A quantity particularly sensitive to the UV-IR crossover
region is the shift due to interactions of the critical tempera-
ture of the dilute Bose gas [12]. In the limit of small cou-
pling, the shift is proportional to u. The proportionality co-
efficient is given (with the normalization used in Ref. [12])
by the nonuniversal quantity

256 ! 1
c= |:—W§[3/2]_4/3f dSP(l'T(m_I?)}’ (9)

in the limit ¥ — 0. Note that the integrand is peaked at values
of p~u and is significant for momenta typically in the range
[Nu/100, 10Nu]. Initially introduced for N=2, corresponding
to Bose-Einstein condensation, ¢ is often used as a sensitive
benchmark of various approximations as it tests the two-
point function over a wide range of momenta. It has been
computed, for several values of N, on the lattice and with
high-order (six-loop) perturbation theory (see Table I).

Table I contains our results for ¢ and the critical
exponents 7, v, and w, together with some of the best
estimates available in the literature. Our numbers are all
given for the PMS values a* of the cut-off parameter, and the
digits quoted remain stable when « varies in the range
[a’*—%, a*+%]. The quality of these numbers is obvious: for
all N values where six-loop resummed calculations exist, our
results for ¢ are within the error bars (and comparable to
those obtained from an approximation specifically designed
for this quantity [24]); the results for v agree with previous
estimates to within less than a percent, for all N; as for the
values of 7 and w, they are typically at the same distance
from the Monte Carlo and temperature series estimates as the
results from resummed perturbative calculations. For
N=100, we find ¢=2.36, #=0.0023, and »=0.990, which
compare well to the exact large N value ¢=2.33 [12] and to
the values 7=0.0027 and »=0.989 obtained in the 1/N ex-
pansion [25]. Altogether our results are significantly better
than those obtained in [10], especially for the smaller values
of N (at large N, the values of 7 coincide if the same cut-off
function is used). They are also more robust since the depen-
dence on the cut-off function has been taken into account.
Our results compare even more favorably with those ob-
tained at order ¢* in the DE scheme [8].

The two-dimensional case, for which exact results exist,
provides an even more stringent test of the BMW scheme.
We focus on N=1 which exhibits a standard critical behavior

TABLE I. Coefficient ¢ and critical exponents of the O(N) models for d=3.

BMW Resummed perturbative expansions Monte-Carlo and high-temperature series

N 7§ v [0} c n v [0} Ref.? n v ) c Ref.?

0 0.034 0.589 0.83 0.0284(25) 0.5882(11) 0.812(16) [13] 0.030(3) 0.5872(5) 0.88 [14] [15]
1 0.039 0.632 0.78 1.15 0.0335(25) 0.6304(13) 0.799(11) 1.07(10) [13][16] 0.0368(2) 0.6302(1) 0.821(5) 1.09(9) [17][18]
2 0.041 0.674 0.75 1.37 0.0354(25) 0.6703(15) 0.789(11) 1.27(10) [13][16] 0.0381(2) 0.6717(1) 0.785(20) 1.32(2) [19] [20]
3 0.040 0.715 0.73 1.50 0.0355(25) 0.7073(35) 0.782(13) 1.43(11) [13][16] 0.0375(5) 0.7112(5) 0.773 [21,22]
4 0.038 0.754 0.72 1.63 0.035(4) 0.741(6)  0.774(20) 1.54(11) [13][16] 0.0365(10) 0.749(2) 0.765 1.6(1) [22][18]
10 0.022 0.889 0.80 0.024 0.859 [23]

*The first reference is for the critical exponents and the second reference is for c.
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in d=2 and the corresponding critical exponents. (The coef-
ficient ¢ is not defined in d=2.) The perturbative method that
works well in d=3 fails here: the fixed-dimension expansion
that provides the best results in d=3 yields, in d=2 and at
five loops, 7=0.145(14) [26] in contradiction with the exact
value 77=41-¥ [27]. We find instead 7=0.254, v=1.00 in excel-
lent agreement with the exact values 77:41-1, v=1.

To summarize, our results show that the single Eq. (5)
[and its generalization to O(N) models] is sufficient to obtain
the momentum dependence of the two-point function with
excellent accuracy, in all momentum regimes, for all N, and
in any dimension. All this is obtained at a modest numerical
cost using simple numerical techniques. The study presented
here is only the leading order of a systematic approximation
scheme. A study of the higher orders would be necessary in
order to quantify the accuracy that has been reached. How-
ever, the robustness of our results can already be gauged
from the weak residual dependence on the cut-off function.

We focused here on critical theories since numerous and
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accurate results exist for the critical regime, allowing for
detailed and systematic checks; but it is clear that the method
can be also used to deal with generically simpler situations.
For instance, one could calculate the structure factor as a
function of the momentum and the correlation length, which
is of experimental interest. The effect of an external mag-
netic field could also be investigated by taking advantage of
the built-in field dependence of 1-‘]((2)_ A detailed investigation
of the d=2 and N>1 cases is also at hand. Finally, this
approach is not limited to O(N) theories. It can also be ap-
plied to disordered, nonequilibrium, or quantum systems, ex-
panding from existing studies within the DE scheme of, e.g.,
absorbing phase transitions [4,7] or random-field models
[28].
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